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1. Introduction

The main result of this paper is

Theorem 1.1. IfM is a closed hyperbolic 3-manifold, then the inclusion of Isom(M)
into Diff(M) is a homotopy equivalence.

Theorem 1.1 had been proven for Haken manifolds in 1976 by Hatcher [Ha1] and
Ivanov [I1, I2]. We showed in [G], [GMT] that π0(Diff(M)) is canonically bijective
with π0(Isom(M)), which is well known to be finite.

The proof of Theorem 1.1 follows along the same lines as the proof of Theorem
0.1 ii) [G]. Namely use the contractibility of the space of Riemannian metrics on
M in conjunction with the insulator theory of [G] to reduce to the Haken case.
The main technical innovation of this paper is the following improvement of the
insulator technology.

Canonical Solid Torus Theorem 3.3. Let δ be an oriented simple closed geo-
desic in the closed orientable hyperbolic 3-manifold M possessing a non-coalescable
insulator family {λij}. Associated to any Riemannian metric r on M there exists
a canonically immersed solid torus Vr having the following properties.

i)
◦
V r is embedded.

ii) If γ is a core of
◦
V r, then it is canonically oriented and with that orientation

is isotopic to δ.
iii) If r is a hyperbolic metric and δr is the oriented geodesic in M freely homo-

topic to δ, then δr is a core of
◦
V r. Its orientation agrees with the canonical

orientation given to cores of
◦
V r.

Remarks 1.2.

i) If f : D2 × S1 → M is the immersion defining Vr, then by
◦
V r we mean

f(
◦
D2 × S1).

ii) In words any Riemannian metric r on M picks out a unique open solid torus
Vr ⊂M . While these tori may not vary continuously, the Non-Encroachment
Lemma 4.3 provides sufficient control to approximately pass from one Vr to
another Vr′ , when r′ is close to r.

iii) The canonical solid torus depends on the insulator family.
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The Mostow Rigidity theorem and [GMT] allow us to equate Diff0(M) with
Hyp(M), the space of hyperbolic metrics on M . Thus we obtain

Theorem 7.3. The space Hyp(M) of hyperbolic metrics on a complete hyperbolic
3-manifold M of finite volume is contractible.

This paper is organized as follows. In §2 we present a detailed outline of the
proof of Theorem 1.1. In particular we show how Theorem 1.1 is deduced from the
Coarse Torus Isotopy Theorem 4.6 and the Local Contractibility Theorem 6.3. In
§3 we give the proof of Theorem 3.3. In §4 we give the proof of the Coarse Torus
Isotopy Theorem. Section §5 gives a new formulation of Hatcher’s theorem (the
Smale Conjecture). The proof of the Local Contractibility Theorem is given in §6
and applications are presented in §7.

Definition 1.3. Diff(M) will denote the space of diffeomorphisms of M with the
C∞ topology. Diff0(M) will denote the path component of Diff(M) containing
idM , i.e. Diff0(M) is the set of diffeomorphisms isotopic to idM . If X, Y are
smooth manifolds then Emb(X, Y ) is the space of smooth embeddings of X into Y .
If X is a subspace of Y , then Emb0(X, Y ) is the subspace consisting of embeddings
isotopic to the standard inclusion.

If E ⊂ Y , then N(k, E) = {y ∈ Y |d(y, E) ≤ k}. Similarly if x ∈ Y , then
B(k, x) = {y ∈ Y |d(y, x) ≤ k}. The symbol ρ will always represent the standard
hyperbolic metric on H3. The particular model of hyperbolic space will be clear
from context. We will assume that ρ is induced from a metric also called ρ on
the closed hyperbolic 3-manifold M . We will use notations such as Nρ(k, E) or
dr(x, y) when the metric ρ or r is not clear from context. |E| will denote the

number of components of E and
◦
E will denote the interior of E. If X ⊂ Y then

Bd(X) = X̄ −
◦
X . If ∆ is a triangulation or cellulation, then ∆k denotes its k-

skeleton.

Acknowledgements. The author is grateful to Hyam Rubinstein, Darryl Mc
Coullugh, Allen Hatcher, Toby Colding and Valentin Poenaru for long conversa-
tions. Hyam Rubinstein enthusiastically suggested that my work on π0(Diff(M))
should generalize to all the higher homotopy groups and told me about [Ha1],
Hatcher’s “multi-parameter” version of Waldhausen’s theorem. Allen Hatcher re-
placed my clumsy proof of Theorem 5.1 by a concise one. He also suggested Theo-
rem 7.5. Darryl Mc Cullough taught me techniques from high dimensional manifold
theory. Toby Colding provided minimal surface advice and Po taught me about
the work of Cerf and many others.

2. The proof of Theorem 1.1

By [G] and [GMT] the inclusion Isom(M) → Diff(M) induces a bijection of
Isom(M) with π0(Diff(M)). Therefore to prove Theorem 1.1 it remains to show
that Diff0(M) is contractible. By [Pa2] Diff(M) is an ANR and by [LW][p. 35]
an ANR has the homotopy type of a CW complex. Thus by J. H. C. Whitehead’s
theorem it suffices to show that all the homotopy groups of Diff0(M) are trivial.

In this chapter we explain how Theorem 1.1 follows directly from the following
results which are established in §4 and §7 respectively.

Coarse Torus Isotopy Theorem 4.6. LetM be a closed orientable hyperbolic 3-
manifold with geodesic δ satisfying the insulator condition. If f : Sn → Diff0(M),
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then there exists a cellulation ∆ of Bn+1 and a function which associates to each
simplex σ ∈ ∆ a solid torus Vσ such that

i) If κ is a proper face of σ, then Vκ ⊂
◦
V σ and Vκ is isotopic to the standard

embedding in Vσ.

ii) If x ∈ σ ∩ Sn, then fx(δ) is a core of
◦
V σ.

Idea of the proof. Associated to x ∈ Sn , there is the push forward hyperbolic
metric (f(x))∗ρ. This gives rise to a map h : Sn → RM(M) the space of Riemannian
metrics on M . The contractibility of RM(M) enables us to extend h to Bn+1 →
RM(M). By Theorem 3.3 associated to each x ∈ Bn+1, there is a canonical solid
torus Vx immersed in M , with embedded interior. Furthermore, the curve δ is
isotopic to a core of Vx. While the various Vx’s do not vary continuously in x, the
Non-Encroachment Lemma 4.3 enables us to maintain sufficient control to obtain
a cellulation ∆∗ which satisfies the conclusions of Theorem 4.6 except that, in

conclusion i) the statement Vκ ⊂
◦
V σ is replaced by the condition Vσ ⊂

◦
V κ. Roughly

speaking our desired cellulation ∆ is the cellulation dual to ∆∗, with Vσ being the
solid torus Vσ∗ , where σ∗ is the cell dual to σ.

Local Contractibility Theorem 6.3. Let δ be an oriented simple geodesic in the
closed hyperbolic 3-manifold M and V a solid torus embedded in M . If H : Sn →
Diff0(M) is such that Ht(δ) ⊂

◦
V for each t ∈ Sn, then H extends to a map

G : Bn+1 → Diff0(M) such that Gs(δ) ⊂
◦
V for each s ∈ Bn+1.

Idea of the proof. Suppose that that V is a closed regular neighborhood N(δ) of
δ and that for n > 0 the restriction of Ht to N(δ) is the identity for all t ∈ Bn+1.

In that case M −
◦
N(δ) is Haken, and Theorem 6.3 follows by the Hatcher, Ivanov

theorem [Ha1],[I1],[I2] for Haken manifolds. (Actually they proved this in the PL
category, but as noted in [Ha1] can be promoted to Diff using [Ha2].) In general
one can control the maps Ht|N(δ), since Emb0(D2 × S1 ,R2 × S1) � S1 × S1 (an
equivalent formulation of the Smale conjecture), and thereby reduce to the previous
case.

The proof that Emb0(D2 × S1 ,R2 × S1) � S1 × S1 is carried out in §5 and the
proof of Theorem 6.3, including the case n = 0, is given in §6.

Proof of Theorem 1.1. Given f : Sn → Diff(M3) construct a cellulation ∆ of
Bn+1 and solid tori Vσ as in Theorem 4.6. That theorem implies that for each

σ ∈ ∆, δ is isotopic to a core of
◦
V σ. Therefore to each x ∈ ∆0 − Sn there exists

an fx ∈ Diff0(M) such that fx(δ) is a core of Vx. Assume by induction that f has
been extended to Sn ∪ ∆i such that if x ∈ σ a k-simplex, 0 ≤ k ≤ i then fx(δ) is a
core of Vσ . By Theorems 4.6 and 6.3 we can extend f to Sn ∪∆i+1 with this same
property. �

3. The Canonical Solid Torus Theorem

The reader should be familiar with the notions of noncoalescable insulator family
and trilinking (see 0.4-0.5 [G] as well as the minimal surface theory developed in §3
[G].

In what follows the set {λij} will denote a (π1(M), {∂δi}) non-coalescable insu-
lator family where δ is a simple closed oriented geodesic and δ0, δ1, δ2, · · · denote
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the lifts of δ to H3. Let g ∈ π1(M) denote the primitive element which fixes δ0,
such that if δ0 is oriented from the repelling fixed point of ∂δ0 to the attracting
one, then δ0 inherits the orientation induced from δ.

Definition 3.1. By an immersed solid torus V ⊂M we mean that V is the image

of an immersion f : D2×S1 →M . By the interior of V or
◦
V we mean f(

◦
D2×S1).

Review of the insulator construction [G] 3.2. Let r be any Riemannian met-
ric on M and let r also denote the induced metric on M̃ = H3. Let {σij} be a
family of π1(M) equivariant r-least area D2-limit laminations which span the {λij}.
To each σ0i let H0i denote the component of H3 − σ0i whose closure contains ∂δ0 .
The set H0 = ∩iH0i contains a unique component that is invariant by the maximal

cyclic group <g> which fixes δ0 and projects to an open solid torus
◦
V which is the

interior of an immersed solid torus V . The orientation on δ induces an orientation
on δ0 and hence on ∂δ0 and hence on each core of

◦
V . Any positively oriented core

of
◦
V is isotopic in M to δ.

To first approximation, one should think of σ0i as a properly embedded r-least
area plane spanning the smooth circle λ0i and H0i as the open half space of H3 −
σ0i which contains ∂δ0. Finally H0 is the intersection of these half spaces and a

component projects down to the open solid torus
◦
V .

Given M, δ and the insulator family {λij}, the construction of V depends only
on the Riemannian metric r and the choice of spanning laminations. The main
result of this chapter eliminates dependence on the spanning laminations.

Canonical Solid torus Theorem 3.3. Let δ be an oriented simple closed geo-
desic in the closed orientable hyperbolic 3-manifold M possessing a non-coalescable
insulator family {λij}. Associated to any Riemannian metric r on M there exists
a canonically immersed solid torus Vr having the following properties.

i)
◦
V r is embedded.

ii) If γ is a core of
◦
V r, then it is canonically oriented and with that orientation

is isotopic to δ.
iii) If r is a hyperbolic metric and δr is the oriented geodesic in M freely homo-

topic to δ, then δr is a core of
◦
V r. Its orientation agrees with the canonical

orientation given to cores of
◦
V r.

Definition 3.4. Let r be the Riemannian metric on H3 induced from the Riemann-
ian metric r on M . For each λij , let {σαij}α∈J denote the collection of r-least area
D2-limit laminations which span λij. Let Hα

ij denote the component of H3 − σαij
which contains the ends of δi. Let Hij = ∩αH

α
ij, Hi = ∩jHij,Σij = ∪ασ

α
ij and

Σi = ∪jΣij.

Lemma 3.5. For all i, j ∈ N,Σ0i ∩ Σ0j �= ∅ implies λ0i ∩ λ0j �= ∅.
Proof. This follows from Lemma 3.5 viii) [G].

Lemma 3.6. i) After reordering the λ0j’s there exists a finite set {λ01, λ02, · · · , λ0m}
which are representatives of the outermost <g>-orbits of {λ0j}j∈N. I.e. given
any λ0k, either λ0k = gq(λ0i) for some q ∈ Z and 1 ≤ i ≤ m or there exists
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an n ∈ Z and j ∈ {1, · · · , m} such that λ0k ⊂ Y (gn(λ0j)), where Y (gn(λ0j))
is the component of S2∞ − gn(λ0j) which does not contain ∂δ0.

ii) H0 = ∩m
i=1∩n∈Zgn(H0j). In words, to construct H0 we need only consider the

collection of spanning laminations corresponding to {λ01, λ02, · · · , λ0m} and
their <g>-translates.

Proof. This follows as on p. 63 [G].

Lemma 3.7. i) If h ∈< g >, then h(H0) = H0 and h(Σ0) = Σ0.
ii) Hi ∩Hj �= ∅ if and only if i = j.

iii) There exists an a > 0 (which depends on r) so the H0 ⊂ Nρ(a, δ0).

Proof. Again these facts follow as in Step 2, p. 63 [G].

Definition 3.8. If t > 0 let Σt =
◦
N(t, δ0)∩Σ0. We say that L is a leaf of Σ0 (resp.

Σt), if L is a leaf of some σα0j (resp. L is a component of R ∩
◦
N(t, δ0) ∩ Σ0, where

R is a leaf of some σα0j).

This paper makes extensive use of the notion of convergence of sequences of
embedded surfaces or laminations in Riemannian 3-manifolds. The reader is advised
to read Definition 3.2 [G] for the definition of the word converges.

Correction 3.9. In this paper and [G] all convergence takes place in the Ck-
topology, all k <∞ rather than the C∞-topology.

Lemma 3.10. (Σ0i and Σ0 are closed in the Ck-topology, all k <∞.) Let w ∈ H3
and L1, L2, · · · a sequence of leaves of the laminations σαj

0ij
such that Lim dρ(Li, w) →

0. After passing to subsequence, each Lj is a leaf of σαj

0i for some fixed i and the
Lj ’s converge to an r-least area D2-limit lamination σα∞

0i which contains w.

Proof. By the local finiteness of {λ0j}, the last sentence of Proposition 3.9 [G] and
the fact that each Lj meets a fixed neighborhood of w, we can pass to a subsequence
so that each Li is a leaf of a lamination spanning the same insulator λ0i. By passing
to another subsequence, and invoking Proposition 3.10 [G] we conclude that these
leaves converge to a r-least area D2-limit lamination σα∞

0i .

Corollary 3.11. H0 and each H0i are open sets. �

Lemma 3.12. i) Each leaf L of Σt is properly embedded in
◦
N(t, δ0).

ii) If t > a, L separates
◦
N(t, δ0) and one component of L−

◦
N(t, δ0) contains both

ends of δ0.
iii) The leaves of Σt have uniformly bounded area.
iv) (Leaves of Σt are closed in the Ck-topology, all k < ∞.) If L1, L2, · · ·

are leaves of Σt respectively containing points x1, x2, · · · and Limxi → x ∈
◦
N(t, δ0), then there exists a leaf Lx of Σt containing x and a subsequence of
{Li} such that the following holds. If K is any compact subsurface in Lx
containing x, then there exist embeddings fi : K → Li such that fi → idK in
the Ck-topology all k <∞ and for all i, xi ∈ fi(K).

Proof. i) The last sentence of Proposition 3.9 [G] together with the fact that L
is contained in a leaf of a D2-limit lamination implies that there exists an embed-

ded disc D ⊂ H3 such that ∂D∩
◦
N(t, δ0) = ∅ and L is a component of D∩

◦
N(t, δ0).�
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ii) Apply Lemma 3.7 iii). �

iii) By the local finiteness of λ0i and the last sentence of Proposition 3.9 [G] only

finitely many < g >-orbits of Σ0i can intersect
◦
N(t, δ0). Applying Proposition

3.9 [G] to these orbits we conclude that there exists a C > 0 such that if L
is a leaf of Σt, then L ⊂ Bρ(C, z) for some z ∈ δ0. The disc D in the proof
of i) can be chosen to have boundary in ∂Bρ(2C, z) or some 2-sphere which is
an arbitrarily close perturbation of it. Thus for some uniform constant C1 > 0,
arear(L) < C1 areaρ(L) ≤ C1 areaρ(D) ≤ C1 areaρ(∂Bρ(2C, z)). �

iv) This follows from Lemma 3.10 and Definition 3.2 [G].

Definition 3.13. A leaf Lx of Σt satisfying the conclusion of Lemma 3.12 iv) is
said to be obtained as a limit of leaves L1, L2, · · · of Σt.

Lemma 3.14. Let U denote
◦
Bρ(η, x) or

◦
Br(η, x). For every t > 0 there exists

ε > 0 so that if η ≤ ε, dρ(x, δ0) ≤ .9t and L leaf of Σt, then L ∩ U is empty or a
properly embedded disc D whose closure in Ū is a properly embedded disc transverse
to ∂Ū .

Proof. Since the leaves of Σ0 are stable minimal surfaces with respect to a metric
induced from a compact manifold, it follows by Schoen [S] that the leaves have
uniformly bounded normal curvature. Therefore there exists ε0 > 0 such that if

ε1 ≤ ε0 and either U =
◦
Br(ε1, x) or

◦
Bρ(ε1, x), then each component D of Σ0|U is a

properly embedded disc whose closure in Ū is a properly embedded disc transverse

to ∂Ū . Furthermore if U ′ =
◦
Bρ(ε′, x) or

◦
Br(ε′, x) and U ′ ⊂ U , then D ∩ U ′ is

connected or empty.
Suppose that M1,M2, · · · is a sequence of leaves of Σt which hit progressively

smaller ρ-balls about y1, y2, · · · in multiple components, where Lim yi → x ∈
Nρ(.9t, δ0). Let L1, L2, · · · denote the leaves of Σ2t which respectively contain the
M1,M2, · · · . Let Lx denote a limit of L1, L2, · · · which contains x. By Lemma
3.12 and the previous paragraph there exists ε2 < ε1 so that Lx ∩ Bρ(ε2, x) is
connected and transverse to ∂Bρ(ε2, x). Let K ⊂ Lx be a compact subsurface
containing x, such that dρ(∂K, δ0) > 1.5t. Let fi(K) ⊂ Li be as in Lemma 3.12
iv). Since fi(K) → K, it follows that for i sufficiently large, dρ(∂fi(K), δ0) > t
and hence Mi ⊂ fi(K). Therefore by Schoen’s theorem if dρ(yj , x) ≤ ε2 − ε′, then
◦
Bρ(ε′, yj) ∩Mi is connected or empty for all i sufficiently large.

Notation 3.15. In what follows, J will denote a component of H0, f = 2a (see
Lemma 3.7) and m will be as in Lemma 3.6. Taking t = a, fix ε to satisfy the
conclusion of Lemma 3.14.

Our next goal, carried out in sections 3.16-3.36, is to show that J̄ is a simply
connected manifold with boundary.

Definition 3.16. . Given a component J of H0, normally orient each leaf L of Σf

to point into the component of
◦
Nρ(f, δ) − L which contains J . This orientation is

called the J-normal orientation. The + side of L is the side facing J .

Warning 3.17. J-normal orientations may not in general induce a consistent trans-
verse orientation on leaves of Σ0.
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Lemma 3.18. i) If KL denotes the component of
◦
N(f, δ0) − L which contains

J , then J is a component of ∩L leaf of ΣfKL. If J ′ is another component of
∩L leaf of ΣfKL, then J ′ is a component of H0.

ii) (Continuity of J-normal orientation) If the leaf L ∈ Σf is a limit of leaves
L1, L2, · · · of Σf and J̄ ∩ L �= ∅ then the J-normal orientation on L induces
the J-normal orientation on Li for i sufficiently large.

Proof. i) The first assertion is immediate. The hypothesis of the second implies

that for each σα0j, J and J ′ lie in the same component of
◦
N(f, δ0) − σα0j and hence

in the same component of H3 − σα0j. �

ii) Let U =
◦
Bρ(ε, x) where x ∈ J̄ ∩L. If Di = Li∩U , then D1, D2, · · · is a sequence

of discs converging in the Ck-topology, all k <∞, to D. For i sufficiently large Di

and D nearly coincide, hence if their J-normal orientations are opposite, then J∩U
would be confined to the region “between” Di and D. Thus, if for i sufficiently
large all such J-normal orientations were opposite, then J ∩ U = ∅.

Definition 3.19. If two leaves L1, L2 of Σf are tangent at x with opposite J-
normal orientations then we say that L1, L2 are antitangent at x and x is an
antitangential point. If U is a sufficiently small η-neighborhood of x, then the
components of U ∩L1 and U ∩L2 containing x are discs which meet along a saddle
or multi-saddle tangency. Call the closure of a component of U − L1 ∪ L2 lying on
the + side of both L1 and L2 a wedge of L1, L2 at x.

Two minimal surfaces S and T which are tangent at y either coincide or meet at y
along a multi-saddle. We say that the multi-saddle is of multiplicity m(y), if locally
S ∩ T consists of 2m(y) + 2 arcs which meet at y. If x is an antitangential point,
then define the m(x), the multiplicity of x, to be the supremum of multiplicity of
pairs of leaves that are antitangent at x.

We say that x ∈ Bd(J) is a spike point if
i) there exist a triple of leaves A,B, C of Σf having a common tangent vector

at x, and no pair of A,B, C are tangent at x.
ii) there exists no v ∈ Tx(H3) which is transverse to A,B, C and whose direction

agrees with the three J-normal orientations at x.
If x is a spike point and U is a neighborhood of x which intersects each

A,B, C in discs, then a spike region is the closure of a component of U −A∪
B ∪ C which lies on the + side of A,B, C and limits on x.

Example 3.20. A spike point and spike region can be found in Figure 4.1 [G].
Note that if the normal orientation of one of the leaves was reversed, then these
leaves would not define a spike point. To understand spike regions, consider very
small spheres centered at x, and the possibly empty tiny triangles in these spheres
which lie on the + sides of the leaves. A spike region is the closure of a continuum
of such triangles which limit on x.

Lemma 3.21. i) If L1 and L2 are antitangent at x, then J lies in at most one
wedge of L1 and L2 at x.

ii) If leaves A,B, C define a spike point x, then at most one spike region of
A,B, C at x intersects J .

Proof. i) Let σα0i and σβ0j be respectively laminations whose leaves contain L1 and
L2. If J ′ is the component of H3−σα0j ∪ σβ0i which contains J , then Lemma 4.1 [G]
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implies that J ′ can contain at most one wedge of L1 and L2 at x. �

ii) Repeat the above argument using the laminations σαa

0a , σ
αb

0b , σ
αc

0c which respec-
tively contain leaves A,B and C.

Lemma 3.22. i) There exists an M < ∞ such that every antitangential point
of Bd(J) has multiplicity ≤M .

ii) If x1, x2, · · · → x is a sequence of antitangential points of Bd(J), then Lim supi→∞m(xi) <
m(x).

iii) The points of Bd(J) which are spike points but not antitangential points is a
discrete set. Any limit point is an antitangential point.

Proof. Suppose that x1, x2, · · · are a sequence of antitangential points of Bd(J)
which limit on x. Suppose that A1, B1;A2, B2; · · · are leaves of Σf with antitan-
gencies respectively at x1, x2, · · · . By passing to subsequence, restricting to an
η ≤ ε open ball U about x, and letting Di (resp. Ei) denote Ai ∩ U (resp. Bi),
then by Lemmas 3.10 and 3.12 we can assume that these Di’s and Ei’s are discs
containing xi which converge in the Ck-topology, all k < ∞, to antitangent discs
D,E at x. Note that D and E cannot coincide in a neighborhood of x, else they
would coincide in U and therefore J ∩ U = ∅.

If we give U Euclidean coordinates and let Q (resp. Qi) denote the tangent plane
to D (resp. Di) at x (resp. xi), then D and E (resp. Di and Ei) are the graphs
of functions on Q (resp. Qi) and the difference function w (resp. wi) satisfies the
following properties. After changing coordinates on Q by a linear transformation
T , w(z) = p(z) + q(z) where p is a linear homogenous harmonic polynomial of
degree d, 2 ≤ d < ∞ and |q(z)| + |z||∇q(z)| + · · · + |z|d|∇dq(z)| ≤ C|z|d+1. Here
z = (z1 , z2) denotes a point in R2 and |∇nq(z)| denotes the Euclidean norm of
the vector of n2 degree-n partial derivatives evaluated at z. This is the well known
local description of tangent minimal surfaces, which is powered by the Bers - Vekua
theorem on general continuation [Be], [Ve]. A proof of the above result is given in
Colding - Minicozzi II [CM] and we acknowledge here the use of their notation and
error term which appears sharper than that found in the literature.

i) Since Di → D in the Ck-topology, k < ∞, it follows that Lim supi→∞ m(xi) ≤
m(x). Using the compactness of Bd(J)/ < g > we obtain conclusion i). �

ii) Now suppose that for all i, m(xi) = m(x) = d−1. It follows from [CM] that after
passing to subsequence, and changing coordinates on Qi by a linear transformation
Ti, with Ti → T , that wi = pi + qi where pi is a linear homogenous harmonic
polynomial of degree d, pi → p, and |qi(z)| + |z||∇qi(z)| + · · · + |z|d|∇dqi(z)| ≤
C|z|d+1. Here C is the same uniform constant and the original coordinates on
Q are related to those of Qi via an orthogonal change of coordinates. In words,
around a uniformly sized neighborhood of x, these (multi)-saddles are geometrically
extremely close.

Since each of Ai and Bi meets U in a single disc it follows that J ∩U must lie on
the + side of each of D,E and each Di and Ei. Therefore for each i, J̄ ∩ U lies in
Wi∩U (resp. W ∩U) where Wi (resp. W ) is a unique wedge of Di ∪Ei emanating
from xi. This implies that for all i and j, xi ∈Wj ∩U and xj ∈ Wi ∩U and finally
{x1, x2, · · ·} ∈W ∩ U .

Using the above equations it follows that there exists η > 0, N < ∞ so that
if U = Bρ(η, x) and i ≥ N , then W (resp. Wi) is contained in K ∩ U (resp.
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Ki ∩ U) where K is a cone based at x (resp. xi) of uniform angle c < π. Thus
{x, x1, x2, · · · } ⊂ K ∩i≥N Ki which is evidently impossible. �

iii) If x1, x2, · · · is a sequence of distinct spike points limiting on x, then after
passing to subsequence there exist triples of leaves Ri, Si, Ti of Σf defining the
spikes which converge to a triple R, S, T which have a common tangent vector at
x. If no pair of R, S and T are tangent at x, then using Schoen’s normal curvature

lemma it follows that there exists η > 0, N <∞ so that if i ≥ N and U =
◦
Bρ(η, x)

then J̄ ∩ U is contained in K ∩ U (resp. Ki ∩ U) where K is a cone based at x
(resp. xi) of uniform angle c < π. Thus one obtains a contradiction as above.

If say R and S are tangent at x but not antitangent, then T must be antitangent
to both. Otherwise for i sufficiently large the triple Ri, Si, Ti would not satisfy the
normal orientation requirement of Definition 3.19

Definition 3.23. [Linear Model near a boundary point x] Suppose that x ∈ Bd(J).
Let T 1x denote the sphere of unit vectors in T (H3) through x. To each leaf L of
Σf through x, let AL denote the closed hemisphere in T 1x bounded by the tangent
plane through L and lying on the positive side of that plane. Let CL = ∂AL.

It follows from Lemma 3.10 that the collection of such CL’s is closed (in the
space of great circles). Thus we obtain

Lemma 3.24. Ax
def
= ∩AL is either

i) a closed disc,
ii) a closed interval,

iii) one or two points or
iv) empty. �

Lemma 3.25. If Limxi → x where xi ∈ J and x ∈ Bd(J) and the xi’s approach
x asymptotically along a tangential direction v ∈ T 1x , then v ∈ AL, for all leaves of
Σf through x.

Proof. If not let E ⊂ T 1x − AL be a small round disc such that v ∈
◦
E. If y is

sufficiently close to x and in a small cone based at x defined by the directions in
E, then y lies on the non + side of L. This implies that y /∈ J .

Definition 3.26. A point x ∈ Bd(J) is of type I if either there exists a vector u
based at x which is transverse to each leaf of Σf passing through x or x is a spike
point which is not an antitangent point. Otherwise we say x ∈ Bd(J) is of type 0.
Let O denote the collection of type 0 points of Bd(J).

Lemma 3.27. If x is of type 0, then x is an antitangent point.

Proof. We need to show that if ∪L leaf through xCL = T 1x , then x is either a spike
point or an antitangential point. Under this hypothesis Ax is not a disc and by
Lemma 3.25, Ax �= ∅.

If Ax is an interval, then let w ∈
◦
Ax and [−1, 1] ⊂ T 1x a small geodesic interval

orthogonal to Ax and passing through w at 0. We will show that x is an antitan-
gential point by showing that there exist leaves R and S such that Ax ⊂ CR (resp.
Ax ⊂ CS) and the + side of R (resp. S) points towards −1 ∈ [−1, 1] (resp. +1).
If not we derive a contradiction as follows. If t > 0, and Lt is a leaf with t /∈ ALt ,
then CLt hits [−1, 1] at some unique point in (0, t) with normal pointing towards 0.
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Since CLt is disjoint from
◦
Ax it follows that as t→ 0, CLt becomes nearly tangent

to Ax. Using Lemmas 3.12, 3.18, we conclude that a limit corresponds to a leaf R
such that CR contains Ax with normal pointing towards −1. In a similar manner
one constructs a leaf S through x so that CS contains Ax with normal pointing to
+1.

If w ∈ Ax and Ax is one or two points, then let T ⊂ T 1x be the circle of vectors
orthogonal to w. Using a limiting argument as above, for each t ∈ T , there exists

a leaf Lt through x such that t /∈
◦
ALt but w ∈ CLt. Just consider a limit of Lts ’s

where ts → w and ts lies on the geodesic arc from t to w and ts /∈ ALts
. This

implies that either ∪t∈T
◦
ALt = S2∞ − {w,−w} or S2∞ − γ where γ lies in a great

semi-circle from w to −w. In the latter case a limiting argument implies that x
is an antitangent point. In the former case a compactness argument implies that

for a finite set {t1, t2, · · · , tn}, ∪n
i=1

◦
ALti

= S2∞ − {w,−w}. If no pair Ati , Atj are
antitangent at x, then a combinatorial argument implies n = 3 suffices and hence
x is a spike point.

Corollary 3.28. Type 0 boundary points of J of multiplicity 1 are a closed discrete
subset of H3. �

Definition 3.29. If X ⊂ Y , then we say that X is 0-LC at x ∈ Bd(X) if for each
open set U of Y containing x, there exists an open set V of Y about x such that if
y, z ∈ X ∩ V , then there exists a path from y to z lying in X ∩ U .

Lemma 3.30. If x ∈ Bd(J) is Type I, then J̄ is a manifold near x.

Proof. The point of this paragraph and the next is to show that a Type I spike
point can be treated just like any Type I point which satisfies the first sentence of
Definition 3.26. Suppose the leaves A,B, and C of Σf define a spike at x with S the
germ of the spike region emanating from x and v a unit vector tangent to each of
the three leaves. Let P denote the union of A,B and C together with the collection
of leaves of Σf which pass through x and which are limits of leaves L1, L2, · · · of
Σf such that for all i, there exists xi ∈ Li with xi ∈ J̄ − x and Lim xi = x. As
η → 0, Bρ(η, x) ∩ S is contained in narrower and narrower hyperbolic cones based
at x. Therefore v must be tangent to every leaf in P. By Lemmas 3.12 iv) and
3.18 ii) it follows that either x is an antitangential point or there exists a non-zero
vector u based at x and transverse to each leaf in P.

If x is Type I because there exists a vector u transverse to each leaf of Σf

through x, then define Σ to be Σf . Otherwise x is not antitangential and there

exists a u as in the preceding paragraph. Let U =
◦
Nρ(η, x) and define Σ to be

the collection of leaves of Σf which hit J̄ ∩ U − x together with all limits of such
leaves which pass through x. Choose η ≤ ε sufficiently small so that if L is a leaf
of Σ passing through x, then L is transverse to the vector u constructed in the
previous paragraph. Such an η exists, else one can find a sequence L1, L2, · · · of
leaves containing x which hit Bd(J) in points closer and closer to x and have u as
a tangent vector. A limit of such leaves lies in P and is tangent to u, a contradiction.

Since x is of type I, and leaves have bounded normal curvature, there exists a
closed neighborhood of the form V = D2 × [−1, 1], where x is identified with the
origin, each z × [−1, 1] is transverse to Σ and if L is a leaf of Σ|V , and L ∩ J̄ �= ∅,
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then L is a closed disc properly embedded in D2 × (−1, 1). Call a leaf L of Σ,
+ if its normal vector points up and − otherwise. If no + leaf meets x, then by
restricting the size of V we can assume that the set of + leaves is empty. Simi-
larly for the − leaves. If there exist + leaves (resp. − leaves) define the function
A : D2 → [−1, 1] (resp. B : D2 → [−1, 1]) by A(z) = max{t| some+ leaf hits (z, t)}
(resp. B(z) = min{t| some− leaf hits z× t}). That Σ is closed in the Ck-topology
implies such maxima and minima exist.

Claim 1. A and B are continuous.

Proof. We prove continuity of A. Let y1, y2, · · · → y be a convergent sequence in
D2. By Lemma 3.18 ii) and 3.12 iv) it follows that Lim sup A(yi) ≤ A(y). Since
there exists a + leaf L through (y, A(y)) and transverse to y× [−1, 1] it follows that
A(y) ≤ Lim inf {A(yi)}. �

If there exists no − leaves, then from the continuity of A one readily deduces
that J̄ is a manifold near x.

¿From now on we will assume that there exist both + and − leaves. Applying the
standard results for intersections of least area surfaces, the Meeks - Yau exchange
roundoff trick and the fact that J ∩ V �= ∅ to our setting we have

Claim 2. A + leaf and a − leaf cannot coincide. If L1 and L2 are distinct leaves
of Σ, then L1 is transverse to L2 except at finitely many (multi)-saddle tangencies.
L1 ∩ L2 contains no embedded simple closed curve. �

Let π : J̄ ∩ V → D2 def= D2 × 0 be the projection onto the D2-factor. Let J1 be
a component of V ∩ J and E1

def= π(J̄1) ⊂ D2.

Claim 3.
◦
E1 = π(J1 ∩

◦
V ) and

◦
E1 is a disc.

Proof. The failure of the either claim would give rise to plus and minus leaves
L1, L2 of Σ violating Claim 2. �

Claim 4.
◦
E1 is 0-LC at every point x of Bd(

◦
E1).

Proof. It follows directly from the next paragraph that given κ > 0 each component

of BD2(κ/2, x)∩
◦
E1 is contained in one of finitely many components of BD2 (κ, x)∩

◦
E1. The subsequent paragraph will show that for some η < κ/2 at most one of the

components of BD2(κ, x) ∩ ◦
E1 can meet BD2 (η, x). These facts imply Claim 3.

We will assume that x ∈
◦
D2 and dD2(x, ∂D2) > κ, for the general case is

similar but notationaly messier. We first show that if ε1 < ε2 ≤ κ, and A is the
annulus spanning the circles S1, S2 of radius ε1, ε2 about x, then only finitely many

distinct components of
◦
E1 ∩A can hit both S1 and S2. Otherwise let α1, α2, · · · be

properly embedded arcs lying in distinct components of
◦
E1 ∩ A whose endpoints

meet both S1 and S2. By passing to subsequence, reordering and choosing a correct
basepoint and orientation on S1 we can assume that the αi’s are ordered according
the linear ordering of the points {αi ∩ S1}. Let S3 be the circle of radius ε3 about
x, where ε1 < ε3 < ε2 and let Ri ⊂ A denote the region between αi and αi+1.
Finally for all i, let si ∈ S3 ∩Ri be such that si ∩ π(J) = ∅ and s a limit point of
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s1, s2, · · · . Let L+i (resp. L−
i ) denote a + leaf (resp. − leaf) through (si, A(si))

(resp. (si, B(si)). Let Ai = {z ∈ Ri|L+i is above L−
i at z}. Since least area surfaces

intersect transversely or in multi-saddles or coincide it follows that Ai �= ∅. The Ai’s
being disjoint implies that Lim area(Ai) → 0. Let i1 < i2 < · · · be a sequence such
that L+i1 , L

+
i2
, · · · limits to L+, L−

i1
, L−

i2
, · · · limits to L− and L+, L− respectively

pass through (s, A(s)) = (s, B(s)). If Z = {z ∈ A|L+ is above L− at z} and C1 > 0

is the area of the smallest (of the finitely many) components of
◦
Z which limit on s,

then for i sufficiently large, area(Ai) > 1
2C1 > 0.

The previous paragraph implies that if η ≤ κ and F is a component of B(η, x)∩
◦
E1 which limits on x, then for y ∈ F there exists an embedded path from y to
x which, except for x, lies in F . If two such components F1, F2 limit on x, then

there exists a simple closed curve α in E1 which intersects Bd(
◦
E1) only at x. If

Dα was the disc bounded by α, then
◦
Dα ∩ Bd(

◦
E1) �= ∅. Let z ∈ ◦

Dα be such that
A(z) = B(z). If L1 and L2 are respectively plus and minus leaves passing through
(z, A(z)), then L1 ∩ L2 gives rise to a contradiction to Claim 2. �

Claim 5. For every κ > 0,
◦
E1 is the union of finitely many connected subsets of

of diameter less than κ.

Proof Use Claim 4 and the compactness of Bd(
◦
E) to find an η > 0 so that

◦
ND2(η,Bd(

◦
E)) ∩

◦
E is contained in the union of finitely many connected subsets of

◦
E of diameter < κ. Any maximal collection {yi} of points in

◦
E −

◦
ND2(η,Bd(

◦
E)),

with the property i �= j implies dD2(yi, yj) ≥ η gives rise to a finite set F of open

η-discs centered at the points of F which contain
◦
E −

◦
ND2(η,Bd(

◦
E)). �

Claim 6. E1 is a disc.

Proof. Using techniques similar to those of p26-32 [Bi2] and Claim 4 it follows that

E is the image of an immersed disc whose interior maps to
◦
E. Actually it is an

embedding otherwise one obtains a contradiction to Claim 2. What follows is a
formal argument.

In the classical language [Wh] a metric space satisfying the conclusion of Claim

5 is said to satisfy Property S. By Theorem 4.2 [Wh], Bd(
◦
E1) is a locally connected

compact continuum such that each point of Bd(
◦
E1) is accessible from all sides from

◦
E1.

If Bd(
◦
E1) had a cut point y, then being accessible from all sides implies that

there exists a simple closed curve α in E1 which meets Bd(
◦
E1) only at y and

the disc bounded by α contains points of Bd(
◦
E1) in it’s interior. This leads to a

contradiction to Claim 2.
Thus Bd(

◦
E1) is a Peano continuum without cut points, p. 76 [Wi], and so by

Corollary 3.32a [Wi] through each point of Bd(
◦
E1) there exists a simple closed

curve lying in Bd(
◦
E1).
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Bd(
◦
E1) must be a simple closed curve, else Bd(

◦
E1) contains an embedded graph

θ of Euler characteristic −1. Being connected,
◦
E lies in only one component of

D2− θ, contradicting the fact that each point of Bd(
◦
E1) is a limit point of

◦
E1. By

the Schoenflies theorem Bd(
◦
E1) bounds a disc which is evidently E1. �

Claim 7. π(x) has a neighborhood that intersects exactly one component of
π(J ∩ V ).

Proof. First suppose that there exist two components F1, F2 of π(J ∩ V ) with
closures E1, E2 which contain x. By Claim 6 these Ei’s are discs and the connec-
tivity of J implies that both must intersect ∂D2 . Let y1, y2 ∈ ∂D2 be such that
A(yi) = B(yi) and y1, y2 separate F1 ∩ ∂D2 from F2 ∩ ∂D2 . Let L+i , L

−
i , i = 1, 2

be leaves of Σ respectively of plus and minus type which pass through (yi, A(yi)).
Finally consider the (at most 4) laminations σαi

0k which contain these leaves. If
J ′ is the component of H3 − ∪σαi

0k which contains J , then J ′ is either non-simply
connected or J∗ the closure of J ′ with respect to the induced path metric is not
injectively immersed. Either situation contradicts Lemma 4.1 [G].

If every neighborhood of π(x) hits infinitely many components of π(J ∩V ), then
we obtain a contradiction in a manner similar to that of the second paragraph of
the proof of Claim 4. �

Claims 6 and 7 imply that after reducing the size of the D2 and reparametrization
π(J ∩ V ) = {(x, y) ∈ D2|y > 0}. Therefore J̄ ∩ V = {(x, y, t)|y ≥ 0 and A(x, y) ≤
t ≤ B(x, y)} which is a tamely embedded 3-cell, thereby completing the proof.

Lemma 3.31. J is simply connected

Proof. Let F be the foliation of H3 by totally geodesic hyperbolic planes orthog-
onal to δ0. Let α ⊂ J be a simple closed curve homotopically nontrivial in J .
Choose α to be transverse to F except at finitely many points and assume that
α has been chosen to minimize this number. Our α may lie completely in a leaf of F .

Case 1. α bounds an embedded disc D in H3.

Proof. Let N ⊂ J be a closed tubular neighborhood of α and N1 a smaller tubular

neighborhood withN1 ⊂
◦
N . Modify the metric r to r1 so that r|H3−N = r1|H3−N

and H3 −
◦
N1 has strictly convex boundary with respect to metric r1. Furthermore

if E ⊂ H3 − ◦
N1 is a disc with ∂E ∩ N = ∅, then arear1(E) ≥ arear(E). By [MY]

there exists an essential properly embedded r1-least area disc D ⊂ H3 −
◦
N1 with

∂D ⊂ ∂N1. Furthermore D is least area among all essential immersed discs with
boundary ∂D on ∂N1. If D ∩L �= ∅ where L is a leaf of some σα0j, then since L is a
leaf of aD2-limit lamination, there exists an embedded disc F ⊂ L, with ∂F∩D = ∅
and F ∩D �= ∅. Since F is an r-least area disc and D is locally r-least area near
D∩F , D∩F are transverse except at finitely many tangencies of the standard sad-
dle or multi-saddle type. A simple closed curve in D ∩ F bounds subdiscs D′ ⊂ D,
F ′ ⊂ F with ∂D′ = ∂F ′. If arear1D′ ≥ arear1 F ′, then the Meeks - Yau exchange
roundoff technique gives rise to a disc contradicting the r1-area minimality of D. If
arear1 D′ < arear1 F ′, then the exchange roundoff technique gives rise to a disc con-
tradicting the r-area minimality of F , since by construction arear D′ ≤ arear1 D′. �



14 DAVID GABAI

Case 2. α is homotopically nontrivial in J .

Proof. We first show that α is homologically trivial in J . Let r and r1 be Rie-
mannian metrics as in Case 1. By [MY] there exists an oriented genus minimizing,

properly embedded surface S ⊂ H3 −
◦
N1 with connected boundary which is an

r1-least area surface among all immersed surfaces properly homotopic to S rel ∂S

in H3− ◦
N1. (S can be thought of as a minimal genus Seifert surface for α.) Again if

S∩σα0j �= ∅, there exists a disc F lying in a leaf of σα0j which nontrivially intersects S
and ∂F ∩S = ∅. Let F ′ ⊂ F be a disc such that ∂F ′ ⊂ S. Since S is π1-injective in

H
3 −

◦
N1 it follows that ∂F ′ bounds a disc D′ ⊂ S. We now obtain a contradiction

as in Case 1.
Therefore if T is a (connected) leaf of F|J and T is transverse to α, then |T∩α| ≥

2. If for all leaves T of F|J, |T ∩ α| ≤ 2, then α is unknotted in H3. Finally, if
|T∩α| > 2, and x, y ∈ T∩α are such that the oriented α points “up” at both x and y,
then we obtain a homotopically nontrivial curve in J with fewer points of tangency
with F via the following procedure. Concatenate the appropriate component of
α− {x, y} with an arc in T with endpoints x, y and isotope slightly.

Definition 3.32. Given x ∈ Bd(J), η < ε and L a leaf of Σf we say that L is
xη − relevant if L ∩ J̄ ∩Bρ(η, x) �= ∅.

Lemma 3.33. For each x ∈ Bd(J) there exists εx ≤ ε such that if η ≤ εx and L is
xη-relevant, then L∩Bρ(η, x) is a disc transverse to ∂Bρ(η, x) and each component
of ∂Bρ(η, x) − L has area at least .40 area(∂Bρ(η, x))).

Proof. It follows from Schoen’s bounded normal curvature lemma [S] that there
exists a constant C such that if η is sufficiently small, β < Cη and L any leaf of
Σf |Bρ(η, x) which intersects Bρ(β, x), then L satisfies the conclusion of the lemma.
Since the metric r is induced from a metric on a closed hyperbolic 3-manifold, C
can be chosen independent of x.

Suppose that L1, L2, · · · were a sequence of xηi-relevant leaves which failed the
conclusion of the lemma, where ηi → 0. Let yi be the ρ-closest point of Li to x. By
passing to subsequence we can assume that yi approaches x asymptotically along
a ray. Since dρ(Li, x) > Cη it follows again by Schoen, that for i sufficiently large
and j sufficiently larger Lj ∩Li ∩Bρ(ηi, x) = ∅ and Lj ∩Bρ(ηi, x) separates x from
Li∩Bρ(ηi, x). Since x lies on the + side of Lj it follows that J̄ ∩Li∩Bρ(ηi, x) = ∅,
a contradiction.

Lemma 3.34. If x ∈ J̄ is a type 0 point, then J̄ is a manifold near x.

Proof. The proof will follow by induction on m(x).

Step 1. m(x) = 1.

Proof of Step 1. By Lemma 3.22 there exists ε1 such that 0 < ε1 < εx and Bρ(ε1, x)
contains a unique type-0 point. Let Bt denote Bρ(t, x).

Claim 1. If 0 < t ≤ ε1, then there exists t1 > 0 so that for each component X of
Bt ∩ J either x ∈ X̄ or dρ(X, x) > t1.

Proof. If not then Bt ∩ J has infinitely many components which hit Bt/2.
Let y1, y2, · · · a sequence of points lying in distinct components of Bt ∩ J , with
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yi ∈ ∂Bt/2. If y is a limit point of {yi}, then y ∈ J̄ and is of type I. But this
contradicts the fact that J̄ is a manifold near y. �

Claim 2. There exists a unique component Ji of Bε1 ∩ J which limits on x.

Proof. It follows from Claim 1 (with t = ε1) that at least one component limits on
x.

Suppose that two components J1 and J2 limit on x. For i = 1, 2 let
◦
Ei be the

component of ∂Bε1 ∩ Ji such that there exists a path σ ⊂ (J − ◦
Bε1) from E1 to E2.

Each
◦
Ei is an open disc else

i) there exists a leaf L tangent to ∂Bη , η ≤ ε1 at a point y ∈ J̄ . This contradicts
Lemma 3.33.

ii) there exist leaves L1 and L2 such that L1∩L2 �= ∅ but L1∩∂Bε1 and L2∩∂Bε1

lay in disjoint components of ∂Bε1 −Ei. This implies that L1∩L2 contains a simple
closed curve, which is a contradiction.

A proof similar to that of Lemma 3.30 shows that each Ēi is a closed disc.
To complete the proof it suffices to show that there exists a finite set of leaves of

Σf |Bε1 whose boundaries separate
◦
E1 from

◦
E2. Indeed, if σα1

0i1
, · · · , σαn

0in
were the

laminations containing these leaves and Ĵ the component of H3 − ∪n
k=1σ

αk

0ik
which

contained J , then Ĵ∗ is either not simply connected or not injectively immersed
in H3. (Here Ĵ∗ is the closure of Ĵ with respect the induced path metric.) This
violates Lemma 4.1 [G].

Since x is an antitangency point there exists a wedge W containing Bε2 ∩ J . By
reducing the size of ε1, if necessary, we can assume that areaρ(DW ) < .01 area∂Bε1

where DW = W ∩∂Bε1 . Suppose that W is defined by the antitangent leaves A,B.
We will show that n ≤ 4 where two of the leaves are A and B. The other one or
two leaves will intersect E1.

Parametrize ∂E1 by [0, 1] mod 1. (From the observer standing on Bε1 , choose
the parametrization to correspond to a clockwise path about ∂E1.) If t ∈ ∂E1,
then Lt will denote a leaf of Σf ∩Bε1 through t. Lt is not in general unique. Since
E1 ∪ E2 ⊂ DW it follows from the previous paragraph and Lemma 3.33, that for
any t, ∂Lt ∩ ∂DW �= ∅.

If there exists a leaf L0 such that ∂L0∪∂DW separates
◦
E1 from

◦
E2 then L0, A, B

are our desired leaves. Otherwise fix a L0. Next consider a Lt. If ∂L0 ∪∂Lt ∪∂DW

separate
◦
E1 from

◦
E2 we are done, otherwise there exists a path α from

◦
E2 to

◦
E1

missing ∂L0 ∪ ∂Lt ∪ ∂DW . We say Lt is to the left of 0 if α can be chosen to miss
(0, t). Otherwise we say that Lt is to the right of 0. If there exists leaves L and L′

both of which pass through t with one to the left of 0 and the other to the right of 0,

then ∂L∪∂L′ ∪∂DW separate
◦
E1 and

◦
E2. Again we are done if there is a Lt to the

left (resp. right) and a Lt′ to the right (resp. left) with 0 < t′ ≤ t (resp. 0 < t ≤ t′).
If Lt1 , Lt2, · · · limits to Ls and each Lti is to the left (resp. right) of 0, then either
Ls is to the left (resp. right) of 0 or ∂Ls∪∂L0∪∂DW separate. If Lt, t �= 0 is to the
left and L′ is a limit of leaves Lt, t ∈ (0, 1), t→ 1, then ∂L0∪∂DW ∪∂L′ separate. �
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By Claims 1 and 2 there exists an embedded path α : [0, 1] → H
3 such that

α([0, 1)) ⊂ J and α(1) = x. We can assume α is transverse to ∪∞
i=1∂Bsi , where

si = ε1/i. Also if
◦
F is a component of ∂Bsi ∩ J , then |

◦
F ∩ α| ≤ 1. Let

◦
F 1,

◦
F 2, · · ·

denote the collection of such discs ordered by how they are hit by α. Let ti ∈ {si}
denote that value so that Fi ⊂ ∂Bti . If j > i and j, i ∈ N, then let R(i,j) denote

the component of J between
◦
F i and

◦
F j . Let Ri denote R(i,i+1).

The region Ri is simply connected since each of
◦
F i,

◦
F i+1 and J are simply con-

nected. The continuity of α and Claim 1 imply that for each t ≤ ε1 there exists
Nt > 0 such that R(i,j) ⊂ Bt for j > i ≥ Nt. We now show that for i > Nε1 , R̄i is

a 3-ball. First, each point of Bd(Ri) not on
◦
F i, is a type I point of Bd(J). Second,

by Lemma 3.33 ∂Bti is transverse to each xti-relevant leaf. Thus the argument of
Lemma 3.30 shows that Ri is a manifold near each point of Bd(Fi) ∪ Bd(Fi+1).
Thus R̄i is an irreducible compact simply connected manifold and hence is a 3-ball.
A similar argument shows that for j > i, R̄(i,j) is a 3-ball. By the second sentence
of this paragraph the sequence of balls R̄j, limit only on x. Thus, if X is the com-
ponent of J − Fi which limits on x, then X̄ is homeomorphic to ∪j≥iR̄j ∪ x where
the latter space is topologized with the 1-point compactification with x being the
point at infinity. Thus X̄ is topologically a 3-ball. This completes the proof of Step
1. �

Step 2. 1 < m(x) ≤M .

Proof of Step 2. Assume by induction that the theorem is true for {x|m > m(x) ≥
1}. We will prove it for m(x) = m. The proof of Step 2 follows exactly like the
proof of Step 1 with the following minor modifications. By Lemma 3.22, for almost
all s, ∂Bs ∩ O = ∅. Choose ε1 so that ∂Bε1 ∩ O = ∅. In the proof of Claim 1 use
only {t|(∂Bt∪∂Bt/2)∩O} = ∅. In the paragraph after the proof of Claim 2, choose
{si} so that ε1 > s1 > s2 > · · · → 0 and for each i, ∂Bsi ∩ O = ∅.

Remark 3.35. It follows immediately from the proof of Lemma 3.30 that ∂J̄ is
tamely embedded in H3 at each type I point of ∂J . A more extensive argument
shows that ∂J̄ is tamely embedded at all the type 0 points. Therefore by Bing [Bi2]
and Moise [Me] ∂J̄ is tamely embedded in H3.

Proposition 3.36. If J is a component of H0, then J̄ is a simply connected man-
ifold with boundary whose interior is J .

Proof. Apply Lemmas 3.30, 3.31 and 3.34.

A collection of smooth simple closed curves λ̂i in S2∞ is locally finite if in the
unit ball model, for every η > 0 there are only finitely many λ̂i’s of diameter > η.

Lemma 3.37. Let x, y ∈ S2∞ and {λ̂i} be a locally finite collection of smoothly
embedded simple closed curves in S2∞ − {x, y}, such that no λ̂i separates x from
y. Let r be a Riemannian metric induced from a closed hyperbolic 3-manifold. To
each λ̂i, let Σ̂i be the union of r-least area D2-limit laminations which span λ̂i. Let
Σ̂ = ∪Σ̂i. Let Ĥ = H3 − Σ̂.

If Ĵ is a component of Ĥ, then Ĵ is open and simply connected.

Proof. The proof of Lemma 3.10 shows that Ĥ is an open set. Simple connectivity
follows from the proof of Lemma 3.31.
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Lemma 3.38. Let x, y ∈ S2∞, r a Riemannian metric on H3 induced from the
closed 3-manifold M and λ̂1, · · · , λ̂m smooth simple closed curves in S2∞ − {x, y}
such that no λ̂i separates x from y. For each i, let Σ̂i be the union of r-least
area D2-limit laminations which span λ̂i and let Hi be the complementary region of
B
3 − Σ̂i which contains x, y. Then either

i) x, y lie in the same component H of ∩m
i=1Hi, or

ii) there exist λ̂i, λ̂j, λ̂k such that λ̂i ∪ λ̂j ∪ λ̂k separate x from y in S2∞.

Proof. This is Lemma 4.3 [G] with Σ̂i in place of σi. If m ≤ 3 and ii) does not
hold, then x, y lie in the same component of S2∞ −∪λ̂i, so i) follows by Proposition
3.9 [G]. Assuming inductively that the lemma is true for m < p, we will establish
it for cardinality p. Therefore either ii) holds or

for every j ≤ p, x and y lie in the same component of ∩i 
=j Hi.(*)

We show that if (∗) holds, then either i) holds or for each j and k, λ̂j ∩ λ̂k �= ∅.
Let τj ⊂ ∩i 
=jHi (resp. τk ⊂ ∩i 
=kHi) be a properly embedded path from x to y. By
Lemma 3.37, each component of int(∩i/∈{j,k}Hi) is simply connected. Thus, there
exists h : I × I → ∩i/∈{j,k}Hi a homotopy from τj to τk. Either Σ̂k ∩ Σ̂j �= ∅ and
hence τk ∩ τj �= ∅ by the proof of Lemma 3.5, or h−1(Σ̂k) and h−1(Σ̂j) are disjoint
closed sets which are disjoint from ∂I × I. Also Σ̂k (resp. Σ̂j) is disjoint from I × 0
(resp. I × 1). Thus, τk ∩ τj = ∅ implies that there exists an embedded path τ
from 0 × I to 1 × I disjoint from h−1(Σ̂j ∪ Σ̂k). Finally, h ◦ τ , is a path from x to
y in ∩p

i=1Hi and so conclusion i) holds. (To construct τ , first engulf h−1(Σ̂j) and
h−1(Σ̂k) in two disjoint families, each of which is a finite union of closed smooth
regions disjoint from ∂I × I and I × 0 (for h−1(Σ̂k)) or I × 1 (for h−1(Σ̂j)).)

Now argue as in the last paragraph of the proof of Lemma 4.3 [G].

Lemma 3.39. There exists a unique unbounded component of H0. There exists a
uniform bound on the diameter of the bounded regions.

Proof. By Proposition 3.9 [G] each σα0j lies in an e-neighborhood of the ρ-convex
hull of λ0j and by Lemma 3.6 there are only finitely many outermost < g >-orbits
of λ0j’s. Thus there exists N0 > 0 such the image under ρ-orthogonal projection
of any σα0j into δ0 has ρ-diameter < N0/2 and hence the image under orthogonal
projection of any Σ0j has ρ-diameter < N0. By Lemma 3.7 iii), H0 ⊂ Nρ(a, δ0).
Let N1 = 2(lengthρ(δ) +N0 + a). Parametrize B3− ∂δ0 by D2 ×R so that in these
coordinates g(x, t) = (x, t+ L), where L = length(δ) and 0 ×R parametrizes δ0 by
arclength. Let p : H3 → δ0 denote ρ-orthogonal projection.

In the next two paragraphs we show that there exists at most one component of
H0 with diameter ≥ N1 and that any component of diameter ≥ N1 is unbounded. If
J1 and J2 are distinct components ofH0 such that [−N0, N0] ⊂ p(J1)∩p(J2) then let
β1, β2 be paths respectively in J1, J2 whose orthogonal projections are paths from
−N0 to N0. Let Σ∗ = ∪{Σ0j|0 ∈ p(Σ0j)}. By choice of N0, p(Σ∗) ⊂ (−N0, N0) and
so J1 and J2 lie in the same component C of H3 −Σ∗. Indeed there exists a closed
loop β ⊂ H3 − Σ∗ obtained by concatenating β1 , β2 with arcs lying in D2 × −N0

and D2 ×N0. By construction D2 × 0 ∩ Σ∗ = D2 × 0 ∩ Σ0. Thus some component
of (D2 × 0) ∩ C is hit algebraically non-zero times by β. This contradicts Lemma
3.37.
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If J3 is a component of H0 of diameter ≥ N1 such that p(J3) �= δ0, then there
exist distinct < g >-translates J1, J2 of J3 such that [−N0, N0] ⊂ p(J1) ∩ p(J2),
which contradicts the previous paragraph. Thus if J1, J2 are distinct components
of diameter ≥ N1, then they both must project to all of δ0 and one thereby obtains
a contradiction as in the previous paragraph.

To complete the proof we need to show that there exists a component of H0 of
diameter ≥ N1. Let Z∗ = ∪{Σ0j|p(Σ0j)∩ [−N1, N1] �= ∅ and λ0j = h(λ0i) for some
i ∈ {1, 2, · · · , m} and h ∈< g >}. (Recall Lemma 3.6.) So Z∗ = Σ0j1 , · · · ,Σ0jk. It
follows from Lemma 3.6 that H0 ∩D2 × [−N1, N1] = ∩k

i=1H0ji ∩D2 × [−N1, N1].
By Lemma 3.38, there exists a component J1 of B3−Z∗ which contains a properly
embedded path β connecting ∂δ0. For each i, β must lie in H0ji. Thus β ∩D2 ×
[−N1, N1] lies in some component of H0 and diamρ(β∩D2× [−N1 , N1]) ≥ 2N1.

Remark 3.40. This proof together with the usual convergence of laminations re-
sults implies that if r lies in a compact region K of the space of Riemannian metrics
on M , then there exists a uniform bound N(K) for the ρ-diameter of bounded re-
gions of H0.

Lemma 3.41. If P ′ : H3 → Mδ =
◦
D2 × S1 is the quotient map under the action

of < g >, then P ′(H0) is the union of open balls and one open solid torus denoted
◦
T r. The closure

◦
T r is a solid torus denoted Tr. Therefore H0 ⊂ H3 is a union of

uniformly bounded open balls and one component
◦
Ur whose H3-closure is a D2×R

denoted Ur whose ends limit on ∂δ0.

Proof. Each component Z of P ′(H0) has π1(Z) ∈ {1,Z} since it is covered by
a component of H0, which by Lemma 3.31 is simply connected, with covering
translations contained in < g >. If Z is covered by a bounded region J, then by
Proposition 3.36 and Lemma 3.39 J̄ is a uniformly bounded ball and hence Z is a
uniformly bounded embedded open ball. If Z is covered by the unique unbounded

region
◦
U r, then the uniqueness of this manifold together with its < g >-invariance

and the fact that its closure Ur is a manifold implies that Z̄ is a compact manifold
with boundary. Z is irreducible since it is covered by an irreducible manifold.
Therefore Z̄ is a solid torus and hence Ur is a D2×R whose ends limit on ∂δ0 .

Remark 3.42. By further generalizing the argument of Step 3, p. 63 [G] it is not
difficult to show that if Z is an open ball, then Z̄ is a closed ball.

Lemma 3.43. Every core of Tr is a core of Mδ.

Proof. Let {σαk

ij } be a π1(M)-invariant collection of r-least area D2-limit lamina-
tions such that for 1 ≤ i ≤ m, each λ0i is spanned by 0 < ni < ∞ laminations.
Since only finitely many < g >-orbits of laminations are involved, the technology

of [G] applies and we obtain an immersed solid torus Vα in M . Also if
◦
Tα is the

injective lift of
◦
V α to Mδ , then its closure Tα is an embedded solid torus. Similarly

if
◦
Uα denotes the lift of

◦
V α to H3 which contains

◦
U r , then Ur the closure of

◦
U r, is

an embedded D2 ×R limiting on ∂δ0 . Because δ lifts to a core of Mδ, Cα lifts to a

core C̃α ⊂
◦
Tα of Mδ .



ISOM(M3) � Diff(M3) 19

Using the local structure of ∂Ur it is not difficult to show that given η > 0 there
exists a collection of laminations {σαk

ij } as above so that Ur ⊂ Uα ⊂ Nρ(η, Ur) and
hence Tr ⊂ Tα ⊂ Nρ(η, Tr).

Let Cr be a core of
◦
V r with C̃r its closed lift to Mδ . To show that Cr is a core

of Mδ it suffices to show that π1(Mδ − C̃r) = Z⊕ Z. This is equivalent to showing
that if T is a solid torus standardly embedded in Mδ and Tr ⊂ T , then every loop
κ ⊂Mδ − C̃r is homotopic in Mδ − C̃r to a loop in Mδ − T .

Let κ be a loop in Mδ − C̃r. Since C̃r is a core of Tr, κ is homotopic in Mδ − C̃r

to a loop κ1 in Mδ − Tr . Let η < dρ(κ1, Tr) and choose Tα so that Tα ⊂ Nρ(η, Tr).
As in the proof of Lemma 4.1 [G], each point of ∂Uα is of type I and hence ∂Tα
is tamely embedded in Mδ. Since C̃α is isotopically standardly embedded in Mδ

this implies that Tα is isotopically standard in Mδ. Therefore κ1 (resp. κ) can be
homotoped off of any compact set in Mδ via a homotopy disjoint from Tα (resp.
Cr).

Proof of the solid torus theorem: i) Our desired canonical immersion of a
D2 × S1 (up to reparametrization) into M is given by q|Tr, where q : Mδ → M is

the covering projection associated to the subgroup <g>⊂ π1(M). Note that q| ◦T r

is an embedding since
◦
T r ⊂ ◦

Tα and by [G] q| ◦Tα is an embedding. Here
◦
Tα is any

◦
D2 × S1 obtained by applying the insulator construction of [G]. Let Vr denote the

immersed solid torus q|Tr and
◦
V r = q(

◦
T r). (Recall Definition 3.1.) �

ii) By Lemma 3.43 if Cr is a core of
◦
V r , then Cr lifts to a core C̃r of Mδ . Let

◦
V α ⊂ M be obtained from the insulator construction of [G] and Cα a core of

◦
V α.

Since Cα is isotopic to δ and Cr ⊂ Cα it suffices to show that Cr is a core of
◦
V α.

This in turn is equivalent to showing that C̃r is a core of
◦
Tα. But as noted in the

proof of Lemma 3.43, Tα is isotopically a standard solid torus in Mδ. Therefore C̃r

is isotopic to C̃α in
◦
Tα if and only if is isotopic in Mδ. By Lemma 3.43 they are

both isotopic to a core of Mδ.
As indicated in 3.2, the orientation on δ induces an orientation on the core Cr of

◦
V r . This orientation has the property that if γ0 is the lift of Cr with ends limiting
on ∂δ0, then γ0 is oriented from the negative to the positive endpoint. If γ0 and
δ0 are viewed as properly embedded arcs in B3, then any isotopy of Cr to δ lifts to
a proper isotopy of γ0 to δ0. This implies that Cr and δ are isotopic as oriented
curves. �

iii) By the convexity property of Definition 0.4 [G] there exists, for each j, a
totally geodesic plane Pj such that ∂Pj separates ∂δ0 from λ0j. Therefore Pj
separates δ0 from any ρ-least area D2-limit lamination σ0j spanned by λ0j. Thus

δ0 subset
◦
Uρ and δ ⊂

◦
V ρ. Reversing the proof of ii) we see that δ is a core of

◦
V ρ. That argument also shows that the orientation on δ, viewed as a core of Vρ
coincides with the given orientation on δ. �
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4. Proof of the Coarse Torus Isotopy Theorem

Notation 4.1. Let RM(M) denote the space of Riemannian metrics on M and
f : Bn → RM(M) continuous. Let Vx denote the canonical immersed solid torus in
M with respect to the Riemannian metric f(x). If x ∈ Bn, then let dx(p, q) denote
distance in M measured by the Riemannian metric f(x). Similarly Areax or V olx
denotes area or volume computed with that metric. dBn (x, y) denotes distance
measured in the standard metric on Bn. Let W ε

x = {y ∈ Vx|dx(y, ∂Vx) ≥ ε}.

Lemma 4.2. Let f : Bn → RM(M) be continuous, whereM is a closed hyperbolic
3-manifold. There exists e > 0 such that if x ∈ Bn, λ a smooth simple closed curve
in S2∞ and σ an x-least area D2-limit lamination spanning λ, then σ ⊂ Nρ(e, C(λ))
where C(λ) is the hyperbolic convex hull of λ.

Proof. This statement is exactly the last sentence of Proposition 3.9 [G], except
the e is uniform over all of Bn . The proof of Proposition 3.9 [G] shows that an
e will work for a fixed metric x, provided that e satisfy the conclusion of Lemma
3.7 [G]. Lemma 3.7 states that if g : B1 → RM(M), then there exists a uniform e
which works for all the metrics g(x). The proof of Lemma 3.7 works equally well
for Bn as it does for B1, the essential point being the compactness of the parameter
space.

While the Vx’s may not vary continuously in x (see Remark 4.2 [G]) we do have
the following key result.

Non-Encroachment Lemma 4.3. LetM be a closed oriented hyperbolic 3-manifold,
δ a simple closed geodesic possessing the (π1(M), {∂δi}) non-coalescable insulator
family {λij} and f : Bn → RM(M) a continuous map.

If x ∈ Bn and ε > 0, then there exists η > 0 such that W ε
x ⊂W ε/2

y if dBn(x, y) <
η.

Proof. For t ∈ Bn , let Ut denote the lift of Vt to H3 whose ends limit on ∂δ0. We
need to show that if z ∈ Ux and dρ(z, ∂Ux) ≥ ε, then for t sufficiently close to
x, z ∈ Ut and dρ(z, ∂Ut) ≥ ε/2.

If this is false, then by the compactness of Ut/<g>, there exists x1, x2, · · ·
converging to x and a z ∈ Ux such that dρ(z, ∂Ux) ≥ ε and for all i either z /∈ Uxi

or dρ(z, ∂Uxi) ≤ ε/2. Therefore we can assume that either
i) for all i, z ∈ Uxi or
ii) for all i, z /∈ Uxi .
If i) occurs, then by Lemmas 3.6 and 4.2 after passing to subsequence we can

find a fixed λ0k such that for all i ∈ N there exists a xi − D2-limit lamination
σi0k spanning λ0k and yi ∈ σi0k such that dρ(yi, z) ≤ ε/2. Again passing to subse-
quence we can assume that yi → y, where dρ(y, z) ≤ ε/2 and σi0k → σ0k a x-least
area D2-limit lamination spanning λ0k. (This uses Proposition 3.10 [G] which is
stated for metrics parametrized by B1 rather than Bn, but the proof works for the
more general setting.) By definition of convergence, y ∈ σ0k, which implies the
contradiction dρ(x, ∂Ux) ≤ ε/2.

We now show that ii) cannot occur. Since z ∈ ◦
Ux, q(z) ∈ ◦

V x and hence there

exists a core γ of
◦
V x passing through q(z). Here q : H3 → M is the universal

covering space projection. The lift γ̃ ⊂ Ux passing through z limits on ∂δ0 . Arguing
as in the previous paragraph it follows that if y ∈ Bn is sufficiently close to x, then
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γ̃ ∩ σα0k = ∅ for all y-least area D2-limit laminations σα0k. Since γ̃ lies in the
component of B3 − σα0k containing ∂δ0, for every σα0k, it follows that γ̃ ⊂ Uy and
hence z ∈ Uy.

Remark 4.4. The η of Lemma 4.3 is probably not uniform in x. Indeed, the
regions Uxi may limit to a disconnected region, one component of which is Ux. In
the limit a piece of the Uxi ’s may get pinched off at an antitangential point or a
spike point.

Lemma 4.5. Let M be a closed hyperbolic 3-manifold with geodesic δ satisfying
the insulator condition. If f : Sn → Diff0(M), then there exists a cellulation ∆∗ of
Bn+1 such that for each cell σ of ∆∗, there exists a solid torus Tσ such that

i) If κ is a proper face of σ, then Tσ is a core of
◦
Tκ.

ii) If x ∈ σ ∩ Sn, then fx(δ) is a core of
◦
Tσ

Proof. Define h : Sn → RM(M) by h(x) = (fx)∗(ρ), the push forward of ρ. By
the contractibility of the space of Riemannian metrics on a closed 3-manifold, there
exists g : Bn+1 → RM(M) extending h. Fix a non-coalescable insulator family for

δ. Thus we can define the canonical solid tori Vx and the sets W ε
x ⊂ ◦

V x for each
x ∈ Bn+1.

For each x ∈ Bn+1 let T 0x ⊂ ◦
V x be a D2 × S1 unknotted in

◦
V x. If x ∈ Sn, then

choose T 0x so that fx(δ) ⊂
◦
T 0x (Note that fx(δ) is the geodesic homotopic to δ inM

with the hyperbolic metric (fx)∗(ρ).) Thus for each x ∈ Bn+1, there exists ε0x > 0
so that T 0x ∈ W ε0x

x and by the non-encroachment lemma for y ∈ Bn+1 sufficiently
close to x, say y in the open set A0x, then T 0x ⊂ W

εx/2
y . For x ∈ Sn choose A0

x to

have the additional property that if y ∈ A0x ∩ Sn , then fy(δ) ⊂
◦
T 0x.

Fix a finite cover of Bn+1 by elements of {A0
x}, say using {x1, · · · , xp} def= X 0

so that Sn is covered by a subset {A0
xik

}, with each xik ∈ Sn ∩X 0. Let ∆0 be any
piecewise smooth cell division such that if σ ∈ ∆0, then σ ⊂ A0

xi
for some xi ∈ X 0.

Furthermore if σ ∩ Sn �= ∅, then σ ⊂ A0
xi

for some xi ∈ Sn ∩ X 0. Finally, define
T 0σ = T 0xi

for some xi as above. If possible, choose xi ∈ Sn.

For each x ∈ ∆n
0 construct a solid torus T 1x unknotted in

◦
V x satisfying the

following property. If σ1, · · · , σr are the cells of ∆0 which contain x, then T 0σ1
∪

· · · ∪ T 0σr
⊂

◦
T 1x ⊂ T 1x ⊂

◦
V x. For x ∈ ∆n

0 let ε1x be such that T 1x ⊂ W ε1

x . By the
non-encroachment lemma, there exists a neighborhood A1x of x such that if y ∈ A1

x,
then T 1x ⊂W (ε1x)/2

y .

Fix a finite cover of ∆n
0 by elements of {A1

x}, say using {x11, · · · , x1q} def= X 1.
Let ∆1 be a piecewise smooth subdivision of ∆0 that only nontrivially subdivides
∆n, such that if σ ∈ ∆1 has dimension ≤ n, then σ ⊂ A1

x1
i

for some x1i ∈ X 1.
Furthermore if in addition σ ∩ Sn �= ∅, then σ ⊂ A1

x1
i

for some x1i ∈ Sn ∩ X 1.
Finally, define T 1σ = Tx1

i
for some x1i as above. If possible, choose x1i ∈ Sn. If

dim(σ) = n+ 1, then T 1σ
def= T 0σ .

In a similar way construct ∆2, · · · ,∆n+1. Here ∆i is obtained from ∆i−1 by
subdividing only the (n − i + 1)-skeleton, and has the feature that if σ is proper
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face of τ and dim(τ ) ≥ n − i + 2, then T i
τ ⊂

◦
T i

σ . Finally take ∆∗ = ∆n+1 and
Tσ = Tn+1

σ .

Theorem 4.6 (Coarse Torus Isotopy Theorem). Let M be a closed orientable hy-
perbolic 3-manifold with geodesic δ satisfying the insulator condition. If f : Sn →
Diff0(M), then there exists a cellulation ∆ of Bn+1 and a function which associates
to each simplex σ ∈ ∆ a solid torus Vσ such that

i) If κ is a proper face of σ, then Vκ ⊂ ◦
V σ and Vκ is isotopic to the standard

embedding in Vσ.

ii) If x ∈ σ ∩ Sn, then fx(δ) is a core of
◦
V σ.

Proof. Let ∆∗ be the cell structure arising from Lemma 4.5 and let ∆′ be the
relative cell structure of Bn+1 dual to ∆∗. Given a cell σ∗ ∈ ∆∗, let σ denote the
dual cell. This induces a natural 1-1 correspondence between cells of ∆∗ and ∆′.
The restriction of ∆′ to Sn gives rise to a regular cell division Σ of Sn . The union
of cells of ∆′ and Σ gives a regular cell division of Bn+1 which we call ∆.

For σ ∈ ∆′, define V ′
σ = Tσ∗ . If σ ∈ Σ is a k-cell, then σ = τ ∩ Sn for a unique

(k + 1)-cell τ ∈ ∆′. Define V ′
σ = V ′

τ . The collection {V ′
σ}σ∈∆′ satisfies all our

conclusions except that if σ = τ ∩ Sn, then V ′
σ = V ′

τ (rather than V ′
σ ⊂

◦
V ′

τ .) By
appropriately shrinking the {V ′

σ|σ ∈ Σ} and maintaining the {V ′
τ |τ ∈ ∆′} we obtain

the desired collection of D2 × S1’s which we denote {Vσ}σ∈∆.

5. Another Formulation Of Hatcher’s Theorem

Let Emb(D2 × S1,R2 × S1) denote the space of smooth embeddings with the
C∞ topology which take the core of each D2 × S1 to a curve isotopic to 0 × S1 ,
the core of R2 × S1 . Let Emb0(D2 × S1 ,R2 × S1) denote the smooth embeddings
isotopic to the standard one.

The following result is an equivalent to the Smale Conjecture. In [Ha2], Hatcher
listed 17 equivalent formulations. Here is another along the same lines.

Theorem 5.1. Emb0(D2 × S1,R2 × S1) � S1 × S1

Proof. View Emb0(D2×S1 ,R2×S1) as Emb0(12D
2×S1 ,

◦
D2×S1), where 1

2D
2×S1

is the concentric solid torus of radius 1
2
. The map Diff0(D2 × S1) → Emb0(12D

2 ×
S1,

◦
D2 × S1) defined by restricting to 1

2D
2 × S1 is surjective and is a fibration

by [Pa1], [Ce]. The fiber is all diffeomorphisms which restrict to the identity on
1
2D

2 × S1 . By [Ha1] or [I1, I2] the fiber is contractible and hence Emb0(D2 ×
S1,R2 × S1) is homotopy equivalent to Diff0(D2 × S1). (Actually they proved
this in the PL category, but as noted in [Ha1] can be promoted to Diff using
[Ha2].) Again restriction is a fibration Diff0(D2 × S1) → Diff0(S1 × S1) with fiber
Diff(D2 × S1, ∂D2 × S1), the space which fixes ∂D2 × S1 pointwise. By [Ha2]
Diff(D2 × S1 , ∂D2 × S1) is contractible and the contractibility of that space is
equivalent to the Smale conjecture. Thus Diff0(D2×S1) is homotopy equivalent to
Diff0(T 2). Fix a basepoint t0 ⊂ T 2. There is a fibration Diff0(T 2) → Emb(t0, T 2) =
T 2 by restriction. The fiber Diff0(T 2, t0) consists of the basepoint preserving maps
of T 2 isotopic to idT 2 . Since the latter space is contractible [Gr] the proof of
Theorem 5.1 is complete.
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Remark 5.2. By tracing back this homotopy equivalence we see that the S1 × S1
corresponds to maps of Diff0(D2 × S1) which are compositions of shifts and rolls.
Shifts are maps of the form (z, t) → (z, eiθt) and rolls are of the form (z, t) →
(eiθz, t), where z ∈ D2 and θ, t ∈ S1 .

A similar argument gives

Theorem 5.3. Emb(D2 × S1 ,R2 × S1) � O(2) ×O(2) × Ω(SO(2))

Remark 5.4. The O(2)’s in Theorem 5.3 allow for reflections in the core and
cocore directions of D2 × S1. Finally given an element φ of ΩS1 one obtains a
diffeomorphism h : D2 × S1 → D2 × S1 by h(z, t) = (eiφ(t)z, t).

6. The local contractibility Theorem

Lemma 6.1. Let δ be a simple closed geodesic in the closed hyperbolic 3-manifold
M . If f : M →M is a diffeomorphism homotopic to idM such that f |δ = idδ, then
f is isotopic to g : M →M such that

1. g|N(δ) = idN(δ)

2. g|(M − ◦
N(δ)) is isotopic to id rel ∂N(δ)

Furthermore, given any neighborhood J of δ there exists a g as above and a
N(δ) ⊂ J such that the isotopy from f to g can be supported in J .

A similar result holds for homeomorphisms f : M →M .

Proof. Given a neighborhood J of δ, let N1(δ) be a small closed regular neighbor-
hood such that f(N1(δ)) ⊂ J . After an isotopy supported in J we can assume that
f fixes N1(δ) setwise. Apriori f |N1(δ) is isotopic to a finite number of Dehn twists

about a meridian, however M −
◦
N1(δ) is atoroidal, anannular and Haken and so

by [Jo] has a finite mapping class group. This implies that f |N1(δ) is isotopic to
idN1(δ) and hence we can assume that after another isotopy supported in J , that
f |N1(δ) = id.

Let q : H3 → M be the universal covering projection and W 1 def
= q−1(N1(δ))

with {W 1
i } the components of W 1. Since f is homotopic to idM there exists a

lift f̃ such that f̃ |S2∞ = id. Since f |N1(δ) = id, for all i f̃ |W 1
i = W 1

i and is a
translation by some n ∈ Z fundamental domain units, n being independent of i.

Choose N(δ) ⊂
◦
N1(δ) and let f1 be the map T−nf where T is the following Dehn

twist about a torus. T |N(δ) ∪ (M −
◦
N1(δ))) = id, where N(δ) ⊂

◦
N1(δ) is a small

regular neighborhood and the restriction to each concentric torus about N(δ) in
N1(δ) is a shift, the θ (of Remark 5.2) varying from 0 to 2π as one goes from ∂N(δ)
to ∂N1(δ). Note that T is isotopic to idM via an isotopy supported in N1(δ) and
if f̃1 is the lift of f1 isotopic to f̃ , then f̃1|W = idW . Here W = q−1(N(δ)). (This
paragraph replaces the inaccurate second sentence of second paragraph of p. 48
[G].)

To complete the proof, proceed as in the rest of the 2nd paragraph of p.48
[G].

Lemma 6.2. If δ is a simple closed oriented geodesic in the hyperbolic 3-manifold
M and δ can be isotoped into the solid torus V ⊂M , then the isotoped δ is a core
of V . If δ1 and δ2 are two isotoped images of δ both lying in V , then δ1 and δ2 are
isotopic (as oriented curves) in V .
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Proof. Let γ be a curve in V isotopic to δ. Since δ represents a primitive element
of π1(M), γ represents a generator of π1(V ). Thus δ, γ and V lift to the covering

space Mδ with fundamental group <δ>. InMδ we have γ ⊂ V ⊂Mδ =
◦
D2×S1 and

δ, hence γ, is a core of Mδ. This implies that γ is a core of V which is unknotted
in Mδ , thereby proving the first assertion.

The failure of the second assertion implies that δ1 and δ2 represent oppositely
oriented cores. That in turn would imply that the geodesic δ is isotopic to itself
oppositely oriented, an impossibility in a hyperbolic 3-manifold.

Theorem 6.3 (Local Contractibility Theorem). Let δ be an oriented simple ge-
odesic in the closed hyperbolic 3-manifold M and V a D2 × S1 in M . If H :

Sn → Diff0(M) such that Ht(δ) ⊂
◦
V for each t ∈ Sn, then H extends to a map

G : Bn+1 → Diff0(M) such that Gs(δ) ⊂
◦
V for each s ∈ Bn+1.

Proof. Fix t0 ∈ Sn . After replacing H by H−1
t0
H and V by H−1

t0
(V ), we can assume

that Ht0 = idM and
◦
V is a neighborhood of δ.

We start with the case n = 0 where t0 = 1 ∈ S0 . Use Lemma 6.2 to extend
H to [−1, 0] ∪ {1} so that H0|δ = H1|δ = idδ . Next use Lemma 6.1 to extend

H to [−1, 12 ] ∪ {1} so that H 1
2
|N(δ) = H1|N(δ) = idN(δ), and H 1

2
|(M −

◦
N(δ)) is

homotopic to id rel ∂N(δ). Finally apply [Wa] to extend H to [−1, 1] so that the
isotopy H |[ 12 , 1] is an isotopy fixed on N(δ). Since, by Lemmas 6.1 and 6.2, these

constructions can be carried out so that Ht(δ) ⊂
◦
V for all t ∈ [−1, 1], the case of

n = 0 is complete.

Claim If n > 0, then there exists a solid torus regular neighborhood X of δ and

K : Bn+1 → Emb0(X,
◦
V ) such that Ht|X = Kt for each t ∈ Sn.

Proof of Claim. ChooseX so thatHt(X) ⊂
◦
V for all t ∈ Sn. Note that V andX can

be parametrized so that Ht0|X ∈ Emb0(X,
◦
V ) is the standard inclusion. If n > 1,

then the Claim follows directly from Theorem 5.1. Now assume that n = 1 and

H |X : S1 → Emb0(X,
◦
V ) represents a nontrivial element of π1(Emb0(X,

◦
V )). The-

orem 5.1 and Remark 5.2 imply that there exists a map L : S1 × I → Emb0(X,
◦
V )

such that for t ∈ S1 , L(t,0) = Ht|X; for s ∈ I, L(t0,s) = idX and (L|S1 × 1)|∂X
represents a nontrivial element of π1(Diff0(∂X)). By the Palais-Cerf covering iso-
topy theorem [Pa1], [Ce], L extends to a map K : S1 × I → Diff0(M) such that

K|S1 × 0 = H and K(t0,s) = idM if s ∈ I. Therefore, if N = M − ◦
X , then

Bt
def= K(t,1)|N , t ∈ S1 , represents a loop in Diff0(N), based at the identity, which

restricts to a nontrivial loop in Diff0(∂N). This contradicts the fact that
◦
N is a

hyperbolic 3-manifold. (The loop Bt, t ∈ S1 lifts to a path of maps B̃t, t ∈ [0, 1]
of H3 starting at the identity. The end of this path must be a nontrivial cover-
ing transformation. This contradicts the fact that the diameters of the homotopy
tracks {B̃t(x)|t ∈ [0, 1]} are uniformly bounded.) �

By the covering isotopy theorem there exists a map J : Bn+1 → Diff0(M) which
extends K and satisfies Jt0 = idM . The map E : Sn → Diff0(M) defined by
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Et = J−1
t Ht satisfies Et0 = idM and Et|X = idX for all t ∈ Sn. Since M − ◦

X
is Haken it follows by [Ha1] or [I1, I2] that E extends to E∗ : Bn+1 → Diff0(M)
such that for z∈Bn+1 E∗

z fixes X pointwise. Define G : Bn+1 → Diff0(M) by
Gz = JzE

∗
z . If t ∈ Sn , Gt = JtE

∗
t = JtEt = JtJ

−1
t Ht = Ht and if z ∈ Bn+1, then

Gz(X) = JzE
∗
z (X) = Jz(X) = Kz(X) ⊂

◦
V .

7. Applications

Definition 7.1. Let Hyp(M) denote the subspace of the space of Riemannian
metrics on M consisting of metrics of constant curvature −1.

Lemma 7.2. If M is a complete hyperbolic 3-manifold, then Hyp(M) is homeo-
morphic to Diff0(M).

Proof. We will show that φ : Diff0(M) → Hyp(M) by f → f∗(ρ) is bijective. Since
idM is the only isometry of M (with respect to a fixed hyperbolic metric) which
is homotopic to idM it follows that φ is injective. Conversely if ρ0 is a hyperbolic
metric on M , then by Mostow there exists an isometry h : Mρ →Mρ0 such that h
is homotopic to idM . By [GMT] h ∈ Diff0(M).

Theorem 7.3. The space Hyp(M) of hyperbolic metrics on a complete hyperbolic
3-manifold of finite volume M is contractible.

Proof. If M is closed, then the contractibility of Diff0(M) follows from Theorem
1.1. If M is noncompact, then the contractibility of Diff0(M) follows from [Ha1] or
[I1, I2]. Now apply Lemma 7.2.

Definition 7.4. If δ is a smooth oriented simple closed curve in the manifold M ,
then let Embδ(S1,M) denote the space of smooth embeddings of an oriented S1

into M whose image is isotopic, as oriented curves, to δ.

The following application was suggested by Allen Hatcher.

Theorem 7.5. Let δ be an oriented simple closed curve in the closed hyperbolic
3-manifold M . If M − δ is atoroidal, then Embδ(S1,M) � S1.
Proof. The fibration Diff0(M) → Embδ(S1,M) defined by restricting to δ has fiber
Diff0(M, δ), the subspace of Diff0(M) that fixes δ pointwise. This space has Z
path components, the various components corresponding to the shifts of δ. Since
Embδ(S1,M) has the homotopy type of a CW complex, the theorem follows from
the long exact homotopy sequence and the fact [Ha1], [I1, I2] that Diff0(M, δ) is
contractible. (Actually it follows directly from [Ha1],[I1, I2] that Diff0(M,N(δ))
is contractible, but that result can be promoted to the desired one via standard
differential topology techniques, similar to those exhibited in the proof of Theorem
5.6 [Mi]).
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